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A n  attempt is made to   descr ibe  the phenomenological differences 
between stall  f l u t t e r  and buffeting. Some experimental  results are pre- 
sented  concerning  both the boundaries a t  which these phenomena occur and 
the stresses  involved. 

INTRODUCTION 

hlanufacturers of propellers and turbines have  been  concerned  with 
the problem of s ta l l  f l u t t e r  far some time. A i r f r a m e  manufacturers, on 
the  other hand, have found that the vibrations  associated w i t h  a re la ted  
phenomena, buffeting, are of more importance in the  design of wings. 
Recently, however, due t o  the trend toward th in  wing sections and large 
masses attached to  the w i n g s ,  airframe designers have also become con- 
cerned  about the problem of stall f l u t t e r .  

- 

DISCUSSION 

Some of the  concern  about stall  f l u t t e r  arises because of the f a c t  
that stall f l u t t e r  and buffeting sometimes occur under similar conditions. 
Both types of vibratfons may occur at  the same time i n  a manner which 
prevents  their   isolation  into two separate phenomena. U s u a l l y ,  however, 
t h i s  is not the case  for simple wing models and the  two types of vibra- 
tion can be studied mre or less independently.  Figure 1 has been  pre- 
pared t o   i l l u s t r a t e  this less complicated  case. This figure shows the 
boundaries  for stall f l u t t e r  and buffet ing  for  a sfmple cantilever w i n g  
model tes ted in  the h g l e y  2- by 4-fmt flutter  research  tunnel.  The 
boundaries a r e  s h m  RS functions of angle of a t tack  and Mach number. 
These boundaries  are  not  necessarily  general  but,  rather, are typical  of 

I some boundaries found far this par t icular  w i n g  model. 
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Since the w i n g  was buffeting a t  a l l  angles above the  buffet  boundary .. 
shown in  figure 1, the  question arises as t o   j u s t  how t h e   s t a l l   f l u t t e r  
boundary was established.  This may be explained by examination of f ig- 
ure 2. This figure shows the  time histories of the bending and torsion 
s t r a ins  for two typical  conditions. The upper set of conditions  apply 
t o  a case of buffeting below the stall f l u t t e r  boundary. These t races  
indicate  the  type of  buffeting which is most ccamnonly encountered, that 
is, a more or less   randm bending  response i n  the  fundamental  bending 
m o d e  w i t h  very l i t t l e  excitation of the  torsion. The lower set of time 
h is tor ies  a t  a slightly higher  angle of a t tack  shows about  the same type 
of bending t race  but  the tors ion  t race  indicates  a fairly clean  sinusoidal 
var ia t ion at about the frequency of the fundamental torsion mode.  The 
s ta l l  f l u t t e r  boundary is defined by the conditions which f irst  produce 
this steady  oscil lation. 

m 

In the low Mach  number region  (see  fig. l), where the two phenmem 
occurred a t  different  angles of attack, no d i f f i cu l ty  was experienced I n  
dfstinguishing between them. In the region near M = 0.6, however, where 
the  boundaries  tend t o  coincide, it becomes  more d i f f i cu l t   t o   de f ine  the 
basic  character  of the vibrations. 

The problem of predicting the stresses associated  with  these sepa- 
rated flaw vibrations has received  considerable  interest.  Recently,  for 
instance, Liepmann (ref. 1) has applied the methods of  parer  spectral 
ana lys i s   to  a relatively  simple case of buffeting, namely, the  response 
of a tail surface  subjected t o  the wake of a s t a l l ed  wing. It is hoped 
that these powerful methods can  be  extended t o  the more general  case of 
a w i n g  excited by forces which originate  because of the Ins t ab i l i t y  of 
flow on the w i n g  itself. However, there i e  a need for addftional know- 
ledge of the  basic nature of the farces   act ing on s t a l l ed  wlnge before 
the  response of even a simple cantilever wing can be successfully  calcu- 
lated; for example, the  question  arises as t o  w h a t  extent  the air forces 
may be considered  linear.  Sisto  (ref. 2) has concluded that a nonlinear 
approach is essent ia l  in order t o  predict  the response due t o  stall 
f l u t t e r  of turbine blades in cascade. It is possible that the  nonllnear 
aspects of the problem w i l l  have t o  be  taken into account in order  to 
predict  the loads or  stresses  involved  in w i n g  vibrations due t o  sepa- 
rated flows. 

. 

The problem of predfcting  the  boundaries st which buffeting or s t a l l  
f l u t t e r  begins  does  not  appear t o  be quite a8 d i f f i c u l t  as the  prediction 
of s t resses  encountered i n  these phenomena. For instance, the buffet 
boundaries for moderately thick wings have,been  successf'ully  calculated 
aPir ica1l .y  (refs. 3 and 4 ) .  It has been  found that the  buffet  bound- 
ary depends  almost en t i re ly  on the  aerodynamics of the configuration 
whereas the  stall f l u t t e r  bomd&ry may be  altered by changes of s t ruc tura l  T 

parameters  such as frequency  or a p i n g .  This difference i n  behavior may 
serve as a general   definit ion of buffeting and stall f l u t t e r .  For the . - 
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case of simple straight cantilever wings which encounter  torsional s ta l l  
f l u t t e r ,  it has been  found (refs. 5 and 6) that satisfactory  information 
concerning  the  stall-flutter boundary can be obtained from s t a b i l i t y  

are used. 
- equations  provided that measured values of the aerodynamic damping momemt 

Unfortunately, hawever, the aerodynamic damping moments for s t a l l ed  
flaws depend very much on Reynolds number, Mach number, a i r f o i l  shape, 
mode of vibration, and other parameters so that accumulation of suffi- 
c ien t  data to   p red ic t  the boundaries  for  arbitrary  configurations would 
be  prohibitive. As a result ,   another approach has been  used in   o rde r   t o  
obtain a rough idea of which configurations may be less   suscept ible   to  
stall f lu t te r   than   o thers .  Although these trend studies  have not been 
completed, some of the   resu l t s  of f l u t t e r  tests of various simple wing 
models are summarized i n  figure 3.  Most of the wings are thin,  highly 
tapered, and of low aspect   ra t io  in keeping wi th  present  design  trends. 

The column on the l e f t  i n  figure 3 i l lus t ra tes   the   bas ic  w i n g  con- 
figurations  followed by columns l i s t i n g  the aspect   ra t io ,  taper  r a t io ,  
and a i r fo i l   th ickness .  The f i f t h  column indicates   the maximum Mach  num- 
ber of the t e s t s  m d  the last column indicates whether the  configuration 

it was tested.  All the w i n g s  were tes ted up t o  angles of a t tack  well 
beyond the angle of maximum l i f t .  

- exhibited a s ta l l - f lu t te r   reg ion  in the range of conditions  over which 

- 
The two delta wings - ac tua l ly   there  were f ive   s t ruc tura l ly   d i f fe ren t  

models - exhibited no stall f l u t t e r   u n t i l  the s t i f fnes s  was reduced t o   t h e  
point where they were more or less of academic in t e re s t  because of their 
poor load-carrying  ability. 

The unswept wing had f lu t t e r   cha rac t e r i s t i c s  similar to  those  reported 
in  reference 6 .  The two aspect-ratio-4 swept wings did not experience 
stall f l u t t e r .  It should  be  pointed  out that a l l  three of the wings of 
this  aspect-ratio-4,  taper-ratio-0.2 series w e r e  somewhat stronger  than 
conventioaal  design  procedures would have required. Wing models of more 
representat ive  s t i f fness   propert ies  remain t o  be tested,. 

The last configuration shown exhibited regions of stall f l u t t e r  which 
seemed t o  be  closely  associated  with  the  regions of leading-edge  vortex 
flow. Some of the f lu t t e r   cha rac t e r i s t i c s  of this configuration  are 
illustrated in f igure 4. In  t h i s  figure, the stall-flutter  boundaries 
for the 45O swept w i n g  are sham as functions of Mach number and angle of 
attack. This configurstion Was original ly  a part of a genera l   s tab i l i ty  
research program being  conducted in the Langley high-speed 7- by 10-foot 
tunnel. 

a 

With the w i n g  i n  the clean  condition  the  large  region of f l u t t e r  
shown in  f igure 4 was found. Analysis  of the aerodynamic coeff ic ients  
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f o r  this configuration (ref. 7) indicated that the flutter  region  coin- . 
tided very  closely with the regions in which leadiag-edge vortex flow 
existed. Consequently, the w i n g  was equipped w i t h  a leading-edge  notch; 
devices of t h i s  type w e r e  originated by Mr. Joseph Well of the Langley I 

high-speed 7- by 10-foot  tunnel as E meana of controll ing the flow at  
the leading edge of the w i n g .  The s ta l l - f lu t te r   reg ion  was then  obtained 
f o r  this condition. With one leading-edge  notch on each wing panel at  
60 percent of the semispan, the small region of f l u t t e r  shown in  f i g -  
ure 4 was found. When the w i n g  was equipped with em additional  notch a t  
about 80 percent of the semispan, no f l u t t e r  was encountered up to  the 
test limits of Mach nMiber and angle of attack. The notch  size is con- 
siderably exaggerated i r f igu re  4. The actual  notches used i n  the experi- 
ments were about 1 percent of the span i n  the spanwise direct ion and about 
3 percent of the  local  chord i n  the chordwise direction. 

All the  preceding  discussion has been  concerned w i t h  sepezated flow 
vibrations which involve  essentially one mode - stall f l u t t e r  i n  the 
first torsion mode and buffeting in the f irst  bending mode. These are 
the  most common types  encountered on simple w i n g  models; however, it 
should not be concluded that these are the only important  types of sepa- 
rated flow vibra t iom.  When the effect  of La3.ge external masses is con- 
sidered the system cannot be regFlrded as a single-degree-of-feedm ‘l 

system, which exclude8 coupling  eflects. This point may be 1llu.strated 
by examination of sane data obtsined on R aynamic f l u t t e r  model of an 
UnSWePt-Wing fighter-type  airplane. This model was tested in the Langley 
16-foot  transonic  tunnel. Some of the r e su l t s  are i l l u s t r a t e d   i n  f lg -  
w e  5, which shows the variation of bend- and to rs ion   s t resses  w i t h  
angle of attack a t  a Mach nuniber of 0.35 f o r  the condition of a l i gh t ly  
loaded t i p  tank. For t h i s  condition the bending and torsion  frequencies 
were Well-Beparated (fh/fa = 0.5) and there was l i t t l e  coupling between 
the two modes of vibration. As a result the w i n g  responded, quali tatively,  
a t  l e a e t ,   i n  a m e r  which might be expected Worn previous  observations 
of simpler models. That fs, the maximum fluctuating peak-to-peak bending 
stress (referred t o  as A bending in the figure) rose gradually as the 
angle of attack was increased beyond the point where  separation began, 
th i s  point be- deduced f’rom the curve of the mean root bending stress. 
TIE peak-to-peak tors ion  s t ress   ( referred t o  as a torsion in the fig- 
ure) rose  rapidly t o  a high value over a aarrar range of angle of attack. 
The time his tor ies  of the stresses Indicated that the w i n g  in  the region 
beyond a = loo was buffeting In predominantly the first bending mode 
and that the  large amplitudes of first-mode tors ion a t  a = 90 were due 
t o  a near approach to   t o r s ion  s ta l l  f l u t t e r .  

.. 

Perhaps the smallness of the range of angle of attack over which 
the torsion stresses were large can be better fnterpreted by examination 
of figure 6 .  This figure shaws the contours of unstable-damping-moment 
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coefficients as functions of angle of at tack and reduced  velocity. These 
d ~ t a  apply t o  a two-dimensional,  symmetrical,  10-percent-thick a i r f o i l  
osc i l la ted  i n  pitch  about the midchord l i n e  with an amplitude of 1.2' 
and w e r e  obtained by a pressure-cell  technique. The so l id  lines in   f i g -  
ure 6 indicate the boundaries  for  zero aerodynamfc damping and the dashed 
l ines  above the lower boundmy indicate  increasing  values of unstable- 
&amping-mauent coefficlents.  

Although the conditions  applying  to these dmrping measurements are 
not suf f ic ien t ly  sfmilar to  those  applying  to  the f l ex ib l e  model t o  allow 
rel iable   quant i ta t ive  calculat ions of the torsion  response,  certain quali- 
t a t ive  features can  be  obtained by  comparison. If the -IC model had 
zero  structural  damping it would have been  expected t o  experience  torsion 
f l u t t e r  over a wide range of angle of a t tack  and velocity.  Inasmuch as 
the  model had some damping, the s ta l l - f lu t t e r  boundary might resemble 
one of the  closed  contours sham in  figure 6. As the angle of attack 
increased at  a substantially  constant  value of reduced  velocity, the 
f lex ib le  wing m o d e l  t o  which f igure 5 pertains is believed  to have 
passed near or  through  the l e f t  boundary of a contour similar to  those 
sham in  figure 6. Over the  small angle-of-attack  range  near a = 9, 
t h e   t o t a l  damping in the  tors ion mode m u s t  have been  very  near  zero, 
so that a large  torsional  response was obtained.  Apparently,  the 
damping i n  the first bending mode remained  moderate SO that only a 
moderate amount of bending  response was excited by the flow separation. 

When the  mass in the tank was h c r e a s e d   t o  the equivalent of 66 per- 
cent  full ,   the  response  characterist ics were changed appreciably and 
&re i l l u s t r a t ed  in figure 7. The data on the l e f t  side of the figure 
refer t o  the condition of the center of gravity of t h e   t i p  tank at the  
e l a s t i c  axis of the wing. This condition has been labeled "neutral 
c.g. location"  and  applies  to the lightweight condition of  figure 5 
as well. The data on the right refer t o  a center-of-gravity  position 
somarhat forward of the e l a s t i c  axis. 

For the  neutral  c.g. case,  the  addition of the  mass t o  the tank 
increased  the  fluctuating  bending  stresses while the  tors ional   s t resses  
were reduced. Presumably, this was caused by the changes i n  effect ive 
damping in the two modes assocLated wi th  the reduction  in  frequencies. 
When the center of gravity was shif ted forward, causing a large mass 
unbalance,  both the tors ion and bending  stresses were increased  appreci- 
ably., and in the  range of angle of a t tack  near a = 10.$O, there were 
short  periods when the bending and tors ion time his tor ies   indicated 8 
coupled-flutter  condition. It may be recalled that normally a forward 
movement of the center  of  gravity  produces a s t ab i l i z ing   e f f ec t .  Row- 
ever, it appears that for  t h i s  case of separated flaws t h i s  type of 
coupling  created an ins tab i l i ty .  This poss ib i l i ty  is discussed  quali- 
t a t i ve ly  by Schallenkamp (ref.  8).  
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Again,  the  question  arises  as  to  whether  these  vibrations  should  be 
called  buffet  or  stall  flutter. In the  light of the  preceding  discussion 
the  following  definitions  suggest  themselves: 

When  the  point  is  reached  where  the  boundary-layer  6eps;ratiOn  becomes 
unstable  there is a continuous  excitation of the  structure  by  the  aero- 
-iC forces  caused  by  this  separation. The amount  the  structure  responds 
to this  continuous  excitation is determfned  primarily by the  damping 
forces  or  moments  acting  on  the  system. If this damping is very  near 
zero  or  negative, so that  very  large and fairly steady  responses  are 
obtained,  then  the  vibration may be  referred  to as stall  flutter. If 
the  damping  remains  positive so that  intermittent and somewhat  random 
responses  are  encountered,  then  the  vibration may be  called  buffeting. 

It  would  have  been  desirable  to  obtain sfmikc information at higher 
bkch  numbers;  however,  this was not  possible  because of the  Stress  limi- 
tations  in  the  model.  Tests  were  conducted  up  to a lift  coef'ficient of 
about 0.2 over a Mach  number  range f r o m  0.7 to 0.85. The  results  obtained 
indicated  just  the  opposite  trend from that  shown in figures 5 and 7. 
There  was a slight  decrease in stresses  with  increased mass in  the  tip 
t ank  and  there was virtually no effect  observed  when  the mass was  shifted 
to  the  forward  position. 

CONCLUDING REMARKS 

In  this  paper an attempt has been  made  to  describe  the  phenomeno- 
logical  differences  between stall flutter and buffeting.  Some  experf- 
mental  results  have  been  presented  concerning  both  the  boundaries  at 
which  these  phenomena  occur  and  the  stresses  involved.  These  results 
demonstrate  the  difficulties  that may be  encountered i n  attempting  to 
draw conclusions  concerning  structural  vibrations  associated  with  sepa- 
rated flow on the  basis  of  insufficient  information. 

Langley  Aeronautical  Laboratory, 
National Advisory Committee for Aeronautics, 

Langley  Field, Va. 
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TYPICAL  STALL-FLUTTER  AND BUFFET BOUNDARIES 
NACA 65AOIO 
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Figure 1. 

TYPICAL TIMF HISTORIES OF BUFFET AND STALL  FLUTTER 
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Figure 2.  



NACA RM L53E15 9 

SUMMARY OF STALL-FLUTTER TREND  STUDIES 

CONFIGURATION  RATIO RATIO RATIO 
ASPECT  TAPER THICKNES 7 "AX IF-ER?  STALL 

4FDELTA 

NO .7 .04 0 2.3 b 60ODELTA 

NO 0.7 0.04 0 4 

A= 60' 4 .2 .04 .7 NO 

A= 45. 6 .6 .06 93 YES 
I I I 1 I 

Figure 3 .  

STALL-FLUTTER BOUNDARIES FOR 45" SWEPT WING 
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Figure 4. 
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BENDING AND TORSION  STRESSES FOR 
13% FULL TIP TANK 
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REGIONS OF UNSTABLE DAMPING IN PITCH 
NACA 6SAOIO 

A = a ,  
20 - 
I6- 

12- 

a ,  DEG 
8- 

M = 0.35 

““””’ 275 .5 
““”” ”””- 

ma= 0 

4 j  I I ,  I 

STABLE 

0 t 2 3 4 5 6 
REDUCED VELOCITY, cw 2v 

Figure 6. 
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BENDING AND TORSION STRESSES FOR 

M = 0.35 
66% FULL TIP TANK 

STRESS, 
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Figure 7 .  
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